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Abstract— In a distributed multi-master-multi-slave teleop-
eration system, the human users may compete against each
other for the control of the team of slave robots. To win the
competition, one operator would send the largest command
to the slave group. For the sake of team cohesion, the slave
group should follow the command of the winning operator and
ignore the commands of the other users. To enable (i) the slave
team to identify the winning operator, and (ii) each slave to
determine whether to admit or discard the command it receives
from its operator, this paper proposes a dynamic decision-
making protocol that distinguishes the decision variable of the
slave commanded by the winner from the decision variables
of all other slave robots. The protocol only requires the
slaves to exchange and evaluate their decision variables locally.
Lyapunov stability analysis proves the theoretical convergence
of the proposed decision-making algorithm. An experimental
distributed winner-take-all teleoperation in a 3-masters-11-
slaves teleoperation testbed validates its practical efficacy.

I. INTRODUCTION

Multi-robot systems teleoperated by human operators can
avail of the human intelligence when making critical de-
cisions and when having to respond fast to unexpected
situations [1]. In particular, the multi-master-multi-slave
framework can enhance the dexterity, manipulation capability
and loading capacity of teleoperation systems [2], [3], and
can improve the efficiency of haptic training [4]. Yet, the
interaction between cooperative robot teams and human
operators may become unstable [5]. Being sufficient for
stabilizing robot teams in interaction with passive users, the
passivity of the robot team has become a prevalent design
objective in teleoperation control [6], [7].

Passivity-based control techniques have tackled slave col-
lisions with other slaves and the remote environment, limited
robot communication ranges, and master-slave kinematic
dissimilarities [8]. An energy tank-based strategy has created
and broken slave interconnections to enable a teleoperated
robot group to passively avoid obstacles [9]. A potential
function of the estimated algebraic connectivity has offered a
decentralized controller for global connectivity preservation
of a teleoperated robot team [10]. A hierarchical control with
energy tanks with energy flows assigned by port-Hamiltonian
analysis has overcome kinematic dissimilarity [11].

Recent research has optimized the interaction of multi-
robot systems with external terminators subject to system
passivity. In [12], a quadratic optimization constrained by
proper scaling of inter-robot connections has regulated pas-
sive interaction forces between a robot group and external
entities. In [13], an energy tank-based optimization has
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adapted the admittance of the robot team subject to a con-
dition on the lower bound of energy storage that guarantees
passivity. In [14], a generalized two-layer approach has let
all masters and slaves share an energy tank to minimize the
conservativeness of maintaining a multi-master-multi-slave
teleoperator passive. In [15], an energy transaction protocol
has distributed energy budgets passively in a multi-robot
team.

The aforementioned works share a lower-level control ob-
jective: to render a teleoperated multi-robot system passive.
Yet, multi-user teleoperation introduces an additional higher-
level decision-making problem rarely covered [16]: a multi-
slave team must determine how to respond to simultaneous
commands from multiple users [17]. Relevant work has
mainly tracked the average of the multiple exogenous inputs
(user commands in multi-user teleoperation). In [18], a
filter-based algorithm with state-dependent gains has en-
abled dynamic average tracking control of nonlinear second-
order multi-agent systems. In [19], a robust approach has
guaranteed arbitrarily small steady-state error of dynamic
average consensus for directed networks. In [20], an integral-
based dynamic consensus technique has robustly filtered the
average of only nonzero sensor measurements.

This paper introduces a distributed decision-making mech-
anism that enables a teleoperated robot group to identify,
and carry out the commands of only, the winner among
its multiple operators. Inspired by Oja’s rule for principal
component analysis [21], the proposed strategy endows each
slave with a decision variable whose evolution depends on (i)
the input from its local operator and (ii) the decision variables
of its neighbouring slaves. Compared to [22], the distributed
decision-making layer can handle the time-varying operator
commands arising in teleoperation by exploiting robust dy-
namic average estimations. Lyapunov energy analysis proves
that the decision variables of all slaves in communication
with the winner converge to a positive limit set and all other
decision variables asymptotically approach zero when the
winner is unique. In other words, the proposed decision-
making strategy enables a multi-robot team teleoperated by
multiple users to distinguish the winner among all its op-
erators by evaluating only local decision variables. Winner-
take-all teleoperation follows by permitting only the slaves
with decision variables above a suitable threshold to apply
their received operator commands: the slave team is teleoper-
ated exclusively by the winner. Experimental winner-take-all
teleoperation in a 3-masters-11-slaves testbed validates the
performance of the distributed decision-making algorithm.
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II. PROBLEM FORMULATION

Let a multi-user teleoperation system include Nm > 1
masters and Ns ≥ Nm slaves, all gravity compensated.
Without loss of generality, let the slave team be connected
and each slave receive information from at most one master.

The task-space dynamics of the master robots are:

Mmi(ymi)ÿmi + Cmi(ymi, ẏmi)ẏmi = fhi − umi, (1)

where i = 1, · · · , Nm indexes all human users and their mas-
ter devices. For each master i: ymi, ẏmi and ÿmi are its posi-
tion, velocity and acceleration; Mmi(ymi), Cmi(ymi, ẏmi)
are its matrices of inertia and of Coriolis and centrifugal
effects; −umi and fhi are the forces applied by its own
controller and by its user, respectively. The control forces:

umi = Kmpymi +Kmdẏmi, (2)

with Kmp and Kmd well-tuned positive gains, (i) provide
force feedback to the operators and (ii) transmit the operator
commands to the Nls active slaves, where Nm ≤ Nls ≤ Ns.

To synchronize the slaves: (i) connect each slave to an
own second-order virtual proxy; and (ii) couple the proxies
of adjacent slaves. Then, the slave group dynamics become:

m̂si
¨̂ysi =

∑
j∼i

K̂sp(ŷsj − ŷsi)− K̂sd
˙̂ysi + fsi,

Msi(ysi)ÿsi + Csi(ysi, ẏsi)ẏsi = Kspỹsi −Ksdẏsi,
(3)

where the index i = 1, · · · , Nls indicates the active slaves,
i.e., slaves that receive user commands from masters, i =
Nls + 1, · · · , Ns indicates asleep slaves, i.e., slaves that
communicate only to other slaves, and j ∼ i indicates the
set of neighbours of the slave i, i.e., slaves j that exchange
information with slave i. For every slave i: m̂si, ŷsi, ˙̂ysi
and ¨̂ysi are the mass, position, velocity and acceleration of
its virtual proxy; ỹsi = ŷsi − ysi is the displacement of its
proxy from it; and Msi(ysi), Csi(ysi, ẏsi), ysi, ẏsi and ÿsi
are the same quantities as in (1) but for slave robots; and fsi
is determined by the proposed decision-making strategy. As
proven in [5, Chapter 4.2.4], the intrinsically passive control
using second-order proxies with positive constant gains K̂sp,
K̂sd, Ksp and Ksd can ensure passive teleoperation.

The proposed decision-making strategy associates a deci-
sion variable xi with each slave and determines fsi in (3) as
follows: fsi = 0 for each asleep slave i = Nls + 1, · · · , Ns,
because asleep slaves communicate with no master; fsi =
umj for the active slave i commanded by the winner operator
j, i.e., the active slave with decision variable xi above a
threshold; and fsi = 0 for all active slaves i who com-
municate with the remaining users, i.e., active slaves with
decision variables xi below the threshold. Identifying the
winner among all users then lies in evolving the decision
variables xi appropriately. The decision-making mechanism
evolving xi is the primary concern of this paper.

In the absence of a decision-making strategy, all users
can teleoperate the slave team from their different locations.
Their commands umi can stand for the degree of their
demands to steer the slave group: user i may increase their

command umi when they intend to gain more control of
the slave network. In Fig. 1, for example, users i = 1, 2, 3
all send commands to the slave team and may compete to
dominate the teleoperation of the multi-slave group. Suppose
all operator commands are applied to the slave network,
i.e., all switches are closed. If user 1 sought to control the
network regardless of opposition from users 2 and 3, user
1 would keep increasing their command um1 to conquer
um2 and um3, while users 2 and 3 would seek to resits
and thus slow the movement of the slave team and threaten
its coordination.

Fig. 1. A slave robot team, with 3 active slaves (Geomagic Touch robots)
and 6 asleep slaves (Novint Falcon robots), teleoperated by 3 users.

To guarantee the agility and cohesion of the slave group,
this paper proposes winner-take-all teleoperation, which per-
mits only the winner user to teleoperate the slave network.
Winner-take-all teleoperation requires a decision-making
mechanism that enables all slaves to recognize the winner
and ignore the commands of all other operators. Hence, this
paper develops a distributed decision-making protocol that
permits each slave to detect whether it receives commands
from the winner by evaluating its own decision variable
based only on information from its neighbouring slaves.

The proposed protocol selects the user with the largest
force command as the winner. To this end, it endows each
slave i with a dynamic decision variable xi and builds a
decision-making layer whose inputs τi encode the magni-
tudes of the commands umj received from the operators via
the following strictly increasing function:

τi = exp(‖umj‖/5), (4)

where i = 1, · · · , Ns, j = 1, · · · , Nm, and umj is given
in (2) for i = 1, · · · , Nls and umj = 0 for i = Nls +
1, · · · , Ns. Note that Nls ≥ Nm and thus one operator
may send force commands to more than one slave. The
experiment in Section IV shows an example where Nm = 3
and Nls = 4 and τ2 and τ3 are encodings of a same
user command um2. Because every xi evolves locally at
its corresponding slave, the communication graph of the
decision layer is isomorphic to that of the slave network
and, thus, it is connected.

Each master sends its operator’s command to different
slaves. Hence, each slave robot needs to determine whether
its master is operated by the winner user by verifying
its decision variable. Let each decision variable xi evolve
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according to τi and to the states of neighbouring vertices
j′ ∼ i′. Let user k be the winner and send the largest force
command umk among all users, ‖umk‖ > ‖umi‖,∀i =
1, · · · , Nm and i 6= k. Then, the decision-making layer
drives the decision variables of all active slaves receiving
the winner’s command to a positive limit set and reduces the
other decision variables to zero. Further, only slaves whose
decision variables are above a certain threshold execute their
received user commands. Hence, the winner can steer the
slave network. For example, let user 1 be the winner in Fig. 1,
i.e., ‖um1‖ > max(‖um2‖, ‖um3‖) and thus τ1 > τi for
i = 2, · · · , 9 by (4). Then x1 converges to a positive limit
set while the other xi-s approach zero. In turn, the active
slave 1 closes switch 1 and executes fs1 = um1 and the
active slaves 2 and 3 open switches 2 and 3 and ignore their
received user commands um2 and um3, i.e., fs2 = fs3 = 0.
As a result, the slave network is driven only by the force
command um1 of the winning user 1.

III. MAIN RESULTS

To identify the winner, let the evolution law of the decision
variable xi of each slave i be:

ẋi = σ · (Nsτixi − ηixi) , (5)

where the subscript i = 1, · · · , Ns indexes the vertex i′ in
the decision-making layer, τi is given in (4), σ > 0, and:

ηi = αi +Nsτix
2
i (6)

is a dynamically-updated gain with:

α̇i =
∑
j∼i

wij(t) · (ηj − ηi) + hij(t) · sign(ηj − ηi) (7)

with wij(t) = wji(t) and hij(t) = hji(t) to be designed.
Let M be the number of communication links in the slave

group. Then, the incidence matrix D and the unweighted
Laplacian matrix L of the decision-making network are de-
fined the same as in [23, Chapter 2]. Let x = [x1, · · · , xNs

]T,
τ = [τ1, · · · , τNs ]T and η = [η1, · · · , ηNs ]T. Let ” ◦ ” be an
operator that takes the product of two vectors component-
wisely (their Haddamard product). The p-th power of a
vector v = [v1, · · · , vNs

]T is thus accordingly vp =
[vp1 , · · · , v

p
Ns

]T. Note that ” ◦ ” has higher precedence than
” · ” in algebraic operations. The dynamics of the overall
decision-making layer then become:

ẋ =σ · (Nsτ ◦ x− η ◦ x),

η̇ =− L(t) · η −D ·H(t) · sign(DT · η) +Nsτ̇ ◦ x2

+ 2σNsτ ◦ x2 ◦ (Nsτ − η),

(8)

where L(t) = D ·W(t) ·DT with W(t) = diag{wij(t)} and
H(t) = diag{hij(t)}.

In (8), η is dynamically updated to estimate τT · x2 · 1,
where 1 = [1, · · · , 1]T. By (8), the estimating error:

δ = η − τT · x2 · 1 (9)

evolves according to:

δ̇ =− L(t) · δ −D ·H(t) · sign(DT · δ) + Lc · (τ̇ ◦ x2)

+ 2σLc ·
[
τ ◦ x2 ◦ (Nsτ − η)

]
,

(10)
where Lc = NsI− 1 · 1T is the unweighted Laplacian of a
complete graph of order Ns. Note that there exists a positive
semi-definite T such that Lc = D ·T ·DT.

The Lyapunov candidate constructed to study the conver-
gence of the decision-making algorithm (5)-(7) is:

V =
1

4
(xT · x−Ns)2 +

ε

2
δT · δ, (11)

where ε > 0 will be determined. The first term in (11)
measures the deviation from 1 of the decision variables xi,
while the second term quantifies the impact of the error of
estimation δ.

Define υ = [υ1, · · · , υM ]T with υi the maximum absolute
value of all elements in the i-th row of T·DT. Let k index the
oriented link (i, j) defined by the selection of the incidence
matrix D [23, Chapter 2]. Further, choose hij(t) by:

hij(t) = Nsστ̃υk · (ηi + ηj), (12)

where τ̃ = τ−1 with τ > 1 the upper bound of all encodings
τi in (4), and select wij(t) by:

wij(t) =

[
υ2k · (ηi + ηj) +KcK2M · (ηi − ηj)2

+
Kcυ

4
k

K2

]
×
(

2Mσετ2 +
Mσ

4N2
s ε

+
Mσ

4Ns

)
+

4M2τ̃2υ2k
NsK1

+
Nsσ

2K1υ
2
k

4
+ %K2

c ,

(13)

where Kc is the maximum singular value of D · T/Ns,
and %, K1 and K2 are positive constants. Note that, the
adaptations of the control gains hij(t) in (12) and wij in (13)
require some quantities relevant to network topology. In
practice, engineers can select, or flooding algorithms [24] can
identify, the communication network when initializing the
teleoperation system. The proposed design is thus distributed
in the sense of implementation.

As in [25, pp.3-6], the derivative of V can then be upper-
bounded by:

V̇ ≤ −κ(t) · V − ε%δT · δ + κ(t) · χ
(
‖τ̇ (t)‖2

)
, (14)

where the dependence of κ(t) and χ
(
‖τ̇ (t)‖2

)
on time is

highlighted for the ease of obtaining (15), and:

κ(t) = στT · x2 and χ
(
‖τ̇ (t)‖2

)
=
Nε‖τ̇‖2

8σ2
.

Time integration of (14) from t0 ≥ 0 to t ≥ t0 yields:

V (t) ≤ exp

(
−
∫ t

t0

κ(θ)dθ

)
· V (t0) + sup

t0≤θ≤t
χ
(
‖τ̇ (θ)‖2

)
.

(15)
The following lemma is key to proving the convergence of
the decision-making algorithm in Theorem 1:
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Lemma 1. Let the dynamics (5) of the decision variables
xi start from xi(0) = 1, with gains updated by (6)-(7) and
αi(0) = 0,∀i = 1, · · · , Ns. Then, the dynamic modulations
(12) and (13), of hij(t) and wij(t), guarantee that:
1. The state x and the error of estimation δ stay in the

invariant set:

I =

{(
‖x‖2 −Ns

)2
+ 2ε‖δ‖2 ≤ 2N2

s ετ
2 +

Nsετ̇

2σ2

}
,

where τ̇ is the upper bound of τ̇i;
2. If ε is selected by:

ε ≤ 2σ2(Ns − ρ)2/
(
4N2

s σ
2τ2 +Nsτ̇

)
, (16)

with 0 < ρ < Ns, then x and δ exponentially converge
to the attractive set:

A =

{(
‖x‖2 −Ns

)2
+ 2ε‖δ‖2 ≤ Nsετ̇

2σ2

}
and the rate of convergence is σρ.

Proof. 1. Let t0 = 0. The definition of V (11) and (15) yield:(
‖x‖2 −Ns

)2
+ 2ε‖δ‖2 ≤ 4V (0) +

Nsετ̇

2σ2
. (17)

The initializations xi(0) = 1 and αi(0) = 0 guarantee that:

V (0) =
ε

2
· τT(0) · Lc · Lc · τ (0) ≤ N2

s ετ
2

2
, (18)

because 0 and Ns are eigenvalues of Lc. Together, Equa-
tions (17)-(18) imply that x and δ are bounded within I.

2. The invariant set I indicates that:

‖x‖2 ≥ Ns −

√
2N2

s ετ
2 +

Nsετ̇

2σ2
.

The selection of ε (16) then guarantees that ‖x‖2 ≥ ρ and
thus κ(t) ≥ σρ for all time. By (11) and (15), it follows that:(

‖x‖2 −Ns
)2

+ 2ε‖δ‖2

≤4 exp(−σρt) · V (0) + 4 sup
0≤θ≤t

χ
(
‖τ̇ (θ)‖2

)
, (19)

which proves the exponential convergence to A. �

The following theorem summarizes the convergence of the
proposed decision-making algorithm.

Theorem 1. Let the distributed decision-making layer (5)-
(7) wih time-varying encodings τi of user inputs be initialized
by xi = 1 and αi = 0, and let ∆τ > 0 be a preset resolution
of the decision-making algorithm. Further: (i) choose σ by:

σ ≥
√
Nsτ̇

/
(p∆τ ), (20)

where p < 1; (ii) select ε by (16); and (iii) update the
parameters hij(t) by (12) and wij(t) by (13) for all i ∼ j.
Then, if there exists k such that τk(t) ≥ ∆τ + τi(t) for all
t ≥ t0 ≥ 0 and for all i = 1, · · · , Ns with i 6= k, the
decision variable xk(t) asymptotically converges to below
the positive limit set:

Wk =
{
xk ≥ w = max

(
Ns − p∆τ

√
ε/2,
√
ρ
)}

(21)

while xi(t)→ 0 asymptotically as t→ +∞ for all i 6= k.

Proof. The selection (20) σ leads to:

sup
0≤θ≤t

χ
(
‖τ̇ (θ)‖2

)
≤ εp2∆2

τ/8.

From (19), the selection (16) of ε further ensures that:

2‖δ‖ ≤
√

8V (0)/ε · exp(−σρt/2) + p∆τ .

The variation of all decision variables is studied using the
quotient function:

E =
∑
i 6=k

xi
xk

, (22)

where i and k are defined in the theorem. By (5), xk and all
xi-s are positive for all time as they start from 1. Further,
because x is bounded by I, E becomes zero if and only if
xi = 0 for all i 6= k. Then, the derivative of E along the
dynamics of the decision-making layer is:

Ė =
∑
i 6=k

[
(τi − τk)

xi
xk

+ (δk − δi)
xi
xk

]
≤− (∆τ − 2‖δ‖) ·

∑
i 6=k

xi
xk

≤
[
−(1− p)∆τ +

√
8V (0)/ε · exp(−σρt/2)

]
· E.

(23)
Further, time integration of Ė gives that, as t→ +∞,

E(t) ≤ exp

[
− (1− p)∆τ (t− t0) +

√
8V (0)/ε

×
∫ t

t0

exp(−σρθ/2)dθ

]
· E(0)

≤ exp

[
− (1− p)∆τ t+ 4

√
2V (0)/ε

/
(σρ)

× exp(−σρt0/2)

]
· E(0)→ 0,

(24)

which, together with E(t) ≥ 0, ensures that E(t) → 0. By
I in Lemma 1, x is bounded, and thus E(t) → 0 indicates
that xi(t) → 0 for every i 6= k. Because x asymptotically
converges to A, xi(t) → 0 for all i 6= k further means that
xk(t) converges to:

Wk1 =
{(
x2k −Ns

)2 ≤ Nsετ̇/ (2σ2
)
≤ εp2∆2

τ/2
}

.

The proof of the second item of Lemma 1 also shows
that (16) makes ‖x‖2 ≥ ρ. Because xk and all xi-s remain
positive throughout time, it follows that:

xk(t) +
∑
i 6=k

xi(t) ≥ ‖x(t)‖ ≥ √ρ.

As a result, xi(t) → 0 for every i 6= k indicates that xk(t)
also approaches:

Wk2 =
{
xk ≥

√
ρ > 0

}
.

Thus, xk(t) asymptotically converges to Wk ⊇ Wk1 ∩Wk2.
�
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Compared to [22], the decision-making layer (5)-(7) with
the dynamic gains (12) and (13) is robust against time-
varying user inputs and, therefore, demands a distinct con-
vergence analysis of the proposed network. As shown in
Lemma 1, the design first explicitly upper bounds the state x
and the estimation error δ, and then devises the selection of ε
to force their exponential convergence to the attractive set A.
This convergence is critical for distinguishing the decision
variable of the winner from those of other users via the
quotient function (22) in the proof of Theorem 1.

The convergence of the proposed decision-making strategy
when the winner commands multiple slaves can be proven
similarly and is omitted due to space constraints. By The-
orem 1, the decision variables of active slaves receiving
commands from the winner converge to a positive limit set
while the decision variables of all other slaves approach zero.
By comparing its decision variable xi to a threshold x < w,
each slave i can decide if it receives commands from the
winner: yes if xi ≥ x and no otherwise. Future work will
investigate the performance of the proposed design when
several users apply equally large forces.

IV. EXPERIMENTAL RESULTS

Fig. 2 shows the distributed 3-masters-11-slaves teleop-
eration testbed used to validate the performance of the
proposed decision-making algorithm. It comprises: 3 black
Novint Falcon robots, the master devices, operated by 3
volunteers; 4 Geomagic Touch robots, the active slaves,
receiving user commands from the masters; and 7 white
Novint Falcon robots, the asleep slaves, that communicate
only with other slaves. Each robot is locally controlled via
USB 2.0 by a C++ program on a dedicated Linux machine.
All Linux machines access the Internet using a 16-port
network switch (with bandwidth 32 Gbps), and run the
Robot Operating System (ROS) to support distributed robot
communications. In Fig. 2, the unidirectional dashed arrows
depict the transmissions of user commands from masters
to active slaves, and the bidirectional solid arrows indicate
the information exchanges among the slaves. Robot sensing,
communication and control run at 1 kHz. The additional
computer at the bottom of Fig. 2 records the experimental
data at 100 Hz and displays the movements of the end-
effectors of all slave robots. A video of the experiment is
available at https://youtu.be/-XOGMFwi8_s.

The experiment has two phases: (i) during the first 5 min-
utes, the users apply forces to the slave group sequentially,
starting with user 3 and ending with user 1; (ii) during the
next 3.5 minutes, they apply forces to the slave network
simultaneously. Fig. 3-Fig. 5 plot the time histories of all
operator forces. The shaded areas are time intervals when
the respective user applies the largest force among all users.

Fig. 6 plots the encodings of the user commands to the
decision-making layer. Note that τ2 and τ3 overlap because
user 2 applies their force to two active slaves, 2 and 3.
Initially, users 3, 2 and 1 apply forces sequentially in this
order, and the encodings τ4, τ3 (τ2), and τ1 become larger
than 1 during the time intervals T1, T2 and T3, respectively.

Fig. 2. The distributed 3-masters-11-slaves teleoperation testbed.
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Fig. 3. The force command um1 of user 1 along x-, y-, and z-axes.
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Fig. 4. The force command um2 of user 2 along x-, y-, and z-axes.

Then, all users apply forces simultaneously, so all encodings
become larger than 1 during all time intervals T4 to T7.
However, only one user applies the largest force during each
of these time intervals, see the command encodings in Fig. 6.

Because communication delays are up to 36 ms in the ex-
periment, the damping −10αi is injected in (7) to practically
stabilize the decision-making algorithm, and stabilization by
damping injection is currently under theoretical study. The
time histories of the practically stabilized decision variables
are depicted in Fig. 7 for the active slaves, and in Fig. 8 for
the asleep slaves. Fig. 7 shows that the decision variables
of active slaves grow larger than 2 when the active slaves
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Fig. 5. The force command um3 of user 3 along x-, y-, and z-axes.
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Fig. 6. The encodings of user commands to the decision-making layer.

receive force commands from the winner. Further, Fig. 7-
Fig. 8 illustrate that: (i) the decision variables of all slaves
approach 0 unless they receive force commands from the
winner; and (ii) if the slave network receives no user com-
mand, i.e., τi = 1 for all i, then all decision variables return
to 1. Therefore, the threshold x for winner selection is set
to 2. Lastly, all decision variables xi stop decreasing when
they reach 0.001 to avoid zero crossings in the discrete-time
implementation of the decision-making algorithm.
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Fig. 7. The decision variables of the active slave robots.
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Fig. 8. The decision variables of the asleep slave robots.

V. CONCLUSIONS

This paper has presented a distributed decision-making
strategy for winner-take-all teleoperation of multi-robot sys-
tems. The strategy equips every slave robot with a decision
variable which it adjusts based on the variations (i) of
the force command received from the local operator and
(ii) of the decision variables of the neighbouring slaves.
Lyapunov stability analysis shows that the strategy can drive
the decision variables of the active slaves who receive force
commands from the winner to a positive limit set and reduce
other decision variables to zero. It thus enables the slave
group to identify the winner in a decentralized manner. An
experimental winner-take-all teleoperation in a distributed
3-masters-11-slaves teleoperation testbed has illustrated the
efficacy of the proposed decision-making strategy. Upcoming
research will make the algorithm robust to time-varying
communication delays and integrate the decision-making
layer into popular cooperative teleoperation schemes.
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