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Abstract— During swarm teleoperation, the operator may
threaten the distance-dependent inter-robot communications
and, with them, the connectivity of the slave swarm. To
prevent the operator from disconnecting the swarm, this paper
develops a constructive strategy to dynamically modulate the
interconnections of, and the local damping injections at, all
slave robots. Lyapunov-based set invariance analysis shows that
the strategy preserves all interaction links in the tree network
while synchronizing the slave swarm. By properly limiting the
impact of the user command rather than rejecting it entirely, the
proposed explicit gain update law enables the operator to guide
the motion of the slave swarm to the extent to which it does not
endanger swarm connectivity. An experiment illustrates that the
proposed strategy can maintain the tree network connectivity
of a teleoperated swarm.

I. INTRODUCTION

Compared to autonomous multi-robot systems (MRS-s),
semi-autonomous teleoperated swarms are partially con-
trolled by human operators and, thus, better suited for com-
plex tasks in unpredictable environments [1]. Existing swarm
teleoperation work has connected the master and slave swarm
via velocity-like variables [2], [3], steered bearing forma-
tions [4], decoupled the master and slave swarm via virtual
kinematic points [5], improved the agility of human-swarm
interaction for optimal coverage control via time-varying
density functions [6], flown arbitrarily many aerial robots
with collision avoidance [7], exchanged forces between an
operator and a group of unmanned aerial vehicles [8].

In practice, the inter-robot communications needed for
distributed MRS synchronization are constrained by the inter-
robot distances [2]. Robot teams with limited communication
range need coordination strategies with guaranteed connec-
tivity. For semi-autonomous MRS-s, passivity-based control
maintains both global [2], [9] and local [5] connectivity.
The gradient laws that preserve global connectivity [2] and
regulate the degree of connectivity [9] derive from a function
of the estimated algebraic connectivity of the teleoperated
swarm [2]. Since the algorithm [10] estimates the algebraic
connectivity, its accuracy and convergence rate determine
the effectiveness of those gradient laws and thus the safety
of the swarm [11]. The estimation errors foil the abil-
ity to mitigate perturbations of global connectivity control
even for first-order MRS-s [12]. Controls derived from a
function of distances between virtual kinematic points [5]
provably maintain only connectivity. Connectivity preserva-
tion through infinitesimal formation rigidity can be sought
using range [13], [14] or bearing [15] measurements. Their
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comparative review [16] illustrates applications of bearing
rigidity in formation control and network localization.

This paper contributes a constructive dynamic coupling
and damping injection law for connectivity-preserving swarm
teleoperation with a tree network. Without loss of generality,
the design assumes that only one slave robot receives the user
command from the master. A customized potential function
of inter-robot distances enables set invariance analysis which
proves that proper upper bounding of the energy stored in the
slave swarm guarantees its local connectivity. The structural
controllability of a tree network yields decentralized controls
that provably bound the swarm energy. The explicit law for
updating the control gains is derived (i) by transforming
the swarm dynamics into a first-order representation with
state-dependent mismatches via sliding surfaces and (ii) by
suppressing the impact of those mismatches on connectivity
via dynamically modulating the interconnections and local
damping injections of all slave robots based on the inter-slave
distances. Effectively, the proposed strategy limits the user-
injected energy into the tree network thereby preventing the
operator from disconnecting the slave swarm. An experiment
with a group of haptic robots validates the preservation of
the tree network of a teleoperated swarm.

II. PROBLEM FORMULATION

Consider a robot swarm teleoperation system with one
master and N slaves, one of which is an informed slave and
communicates with the master unconstrained by distance [5].
Let the inter-slave communications be undirected and con-
strained by the communication distance r. A user operates
the master to command the slave group to a desired location.
Assuming passive master-informed slave coupling, this paper
develops a controller to preserve the connectivity of the slave
swarm under the user command sent by the master.

Let the slave swarm be a network of n-degree-of-
freedom (n-DOF) Euler-Lagrange (EL) systems:

M1(x1)ẍ1 + C1(x1, ẋ1)ẋ1 =u1 + f ,
Ms(xs)ẍs + Cs(xs, ẋs)ẋs =us.

(1)

In Equation (1): the subscript 1 indicates the informed slave
that receives the user command from the master; subscripts
s = 2, · · · , N index the remaining N − 1 slaves; and f
is the time-varying command from the master. For each
slave i = 1, · · · , N : xi, ẋi and ẍi are its position, velocity
and acceleration; Mi(xi) and Ci(xi, ẋi) are its matrices
of inertia and of Coriolis and centrifugal effects; and ui is
its connectivity-preserving control force to be designed. The
dynamics (1) have the following properties:
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P.1 The inertia matrices Mi(xi) are symmetric, positive
definite and uniformly bounded by: λi1I � Mi(xi) �
λi2I for any xi ∈ Rn, where λi1 > 0 and λi2 > 0;

P.2 Ṁi(xi)− 2Ci(xi, ẋi) are skew-symmetric;
P.3 Ci(xi,yi) are linear in yi, and there exist ci > 0 such

that ‖Ci(xi,yi)zi‖ ≤ ci‖yi‖‖zi‖, ∀xi,yi, zi ∈ Rn.
Because all inter-slave communications are constrained by

the same radius r, slaves i and j can exchange information
at time t ≥ 0 iff their distance is strictly smaller than r, i.e.,
‖xij‖ = ‖xi(t) − xj(t)‖ < r, ∀i, j ∈ {1, · · · , N}. Then,
this paper preserves the connectivity of the slave swarm by
maintaining certain bidirectional links (i, j) through properly
constraining the respective ‖xij(t)‖ for all time t ≥ 0.

Let an undirected graph G(t) = {V, E(t)} represent
the inter-slave information exchanges. The vertex set V =
{1, · · · , N} collects all the slaves in the swarm. The edge
set E(t) ⊂ {(i, j) ∈ V × V} includes all inter-slave com-
munication links. By definition, robots i and j are adjacent,
i.e., (i, j) ∈ E(t), iff they exchange information. The set of
neighbours of slave i ∈ V is Ni(t) = {j ∈ V | (i, j) ∈ E(t)}
and collects all slaves adjacent to it at time t ≥ 0. In G(t), a
path between slaves i and j is a sequence of distinct vertices
i, a, b, · · · , j such that consecutive vertices are adjacent. The
graph G(t) is connected iff a path exists between any two
distinct vertices. Further, G(t) is a tree if any two vertices
are connected by exactly one path, as in Figure 1(a).

Given a tree G(t) of order N , its associated weighted
adjacency matrix A = [aij ] is defined by: aij = aji > 0 if
(i, j) ∈ E(t), and aij = 0 otherwise. Its weighted Laplacian
matrix L = [lij ] is defined by: lij =

∑
k∈Ni(t)

aik if j = i,
and lij = −aij otherwise. If aij ∈ {0, 1}, the graph has
an unweighted Laplacian matrix L. Let an orientation of
G(t) define an oriented graph G∗(t), and label each oriented
edge (i, j) as ek, k = 1, · · · , N − 1, with weight w(ek) =
aij = aji, as shown in Figure 1(b). The incidence matrix
D = [dhk] associated to G∗(t) is defined by: dhk = 1 if
vertex h is the head of edge ek; dhk = −1 if h is the tail
of ek and dhk = 0 otherwise. The edge Laplacian of G∗(t)
is then Le = DTD. The following lemmas [17] will help
prove Lemma 1 in Section III:
L.1 The second smallest eigenvalue λL of the unweighted

Laplacian L is positive, i.e., λL > 0.
L.2 Le and L have the same set of nonzero eigenvalues.
L.3 The weighted Laplacian admits the decomposition L =

DWDT, with W an (N−1)×(N−1) diagonal matrix
with w(ek), k = 1, · · · , N − 1, on the diagonal.

(a) The tree network G(t)
of a slave swarm.

(b) An orientation G∗(t) of
the undirected tree network
G(t).

Fig. 1. The tree network G(t) and an orientation G∗(t) for an illustrative
slave swarm in (1).

The paper adopts the following assumptions on the initial
system configuration and on the command from the master.

Assumption 1. The initial interaction network G(0) of the
slave swarm is a tree with all initially adjacent robots strictly
within communication distance, i.e., ∀(i, j) ∈ E(0), ∃ε >
0 such that ‖xij(0)‖ < r − ε.

Assumption 2. The user command from the master side is
bounded by ‖f‖ ≤ f .

Since a connected graph has at least one spanning
tree [17], Assumption 1 directly presumes a minimally
connected initial interaction network G(0). Since the EL
slaves have inertia, it adopts the same distance condition
‖xij(0)‖ < r − ε on initially adjacent robots (i, j) ∈ E(0)
as in connectivity preservation of fully autonomous second-
order MRS-s [18]. Then, this paper addresses the following
connectivity-preserving swarm teleoperation problem:

Problem 1. Find distributed control laws to drive the teleop-
erated swarm (1) satisfying Assumptions 1 and 2 such that:

1. The velocities of, and the position errors between, any
two slave robots i, j = 1, · · · , N are bounded in the
presence of the user command, i.e., {ẋi, ẋj ,xi−xj} ∈
L∞ when f 6= 0;

2. All slave robots i, j = 1, · · · , N are synchronized in the
absence of the user command, i.e., {ẋi, ẋj ,xi−xj} →
0 when f = 0;

3. All interaction links (i, j) ∈ E(0) of the initial slave
network G(0) are maintained, i.e., ∀(i, j) ∈ E(0) ⇒
(i, j) ∈ E(t) ∀t ≥ 0, and, with them, the connectivity
of the slave swarm G(t) is preserved.

The first two objectives in Problem 1 are similar to those
of conventional bilateral teleoperation [19]. The last objective
and Assumption 1 show that the proposed strategy preserves
connectivity by maintaining a spanning tree of the teleoper-
ated swarm. Future research will study switching spanning
trees for connectivity-preserving swarm teleoperation.

III. MAIN RESULTS

By Assumption 1 and the third objective in Problem 1, this
paper maintains the connectivity of the teleoperated swarm
by rendering invariant the edge set E(t) of the tree network
G(0) for any t ≥ 0. The inter-slave communication links
(i, j) ∈ E(t) are verified by:

ψ(‖xij‖) =
P‖xij‖2

r2 − ‖xij‖2 +Q
, (2)

where P and Q are positive constants to be designed. Being
continuous, positive and strictly increasing with respect to
‖xij‖ for any ‖xij‖ ∈ [0, r] [18], the functions ψ(‖xij‖)
can describe the energy stored in all links (i, j) ∈ E(0) by:

Vp =
1

2

N∑
i=1

∑
j∈Ni(0)

ψ(‖xij‖). (3)

The following proposition guarantees the feasibility of
connectivity preservation using functions (2):
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Proposition 1. Under Assumption 1, Vp in (3) satisfies:

Vp(0) + ∆ <
Pr2

Q
= ψmax

for any ∆ > 0 and any Q and P selected by:[
r2 − (N − 1)(r − ε)2

]
Q+

[
r2 − (r − ε)2

]
r2 > 0,

P >

[
r2 − (r − ε)2 +Q

]
Q ·∆

[r2 − (r − ε)2 +Q] r2 − (N − 1)Q · (r − ε)2
.

(4)

In turn, Proposition 1 permits to examine the distance
constraint on every link (i, j) ∈ E(0) by Proposition 2:

Proposition 2. Given Assumption 1, ∆ > 0, and P and Q
selected by (4), let Vp in (3) satisfy:

Vp(τ) ≤ Vp(0) + ∆, ∀τ ∈ [0, t]. (5)

Then ‖xij(t)‖ < r for any (i, j) ∈ E(0).

Propositions 1 and 2 are proven in [20]. They indicate
that set invariance [21], [22] is key to proving connectivity
preservation in this paper: the paper constrains the distance
‖xij‖ between each pair of initially adjacent slaves (i, j) ∈
E(0) to render invariant the edge set E(t) of a teleoperated
swarm with a tree network. The potential functions (2)
and (3) characterize the inter-slave distances in Proposi-
tions 1 and 2 and thus serve to investigate the invariance
of E(t). A similar strategy has been used in [18] to prove
connectivity maintenance for autonomous double-integrator
multi-agent systems. In contrast, this paper preserves the tree
network of a robotic slave swarm driven by a time-varying
and unpredictable user command. The main contribution is
the constructive design of a dynamic coupling and damping
injection controller that guarantees (5) under the perturbation
of the user input transmitted by the master command f .

To bound the potential energy Vp using local information
of each robot i, define a surface si for each slave i by:

si = ẋi + σθi, (6)

where i = 1, · · · , N , σ > 0 and:

θi =
∑

j∈Ni(0)

∇iψ(‖xij‖) (7)

with the gradient of ψ(‖xij‖) with respect to xi given by:

∇iψ(‖xij‖) =
2P
(
r2 +Q

)
(r2 − ‖xij‖2 +Q)

2 (xi − xj) . (8)

Then, the dynamics of the teleoperated swarm (1) can be
transformed into:

M1(x1)ṡ1 + C1(x1, ẋ1)s1 =σ∆1 + u1 + f ,
Ms(xs)ṡs + Cs(xs, ẋs)ss =σ∆s + us

(9)

where ∆i are state-dependent mismatches given by:

∆i = Mi(xi)θ̇i + Ci(xi, ẋi)θi. (10)

The following lemma is key to the connectivity mainte-
nance proof in the remainder of the paper.

Lemma 1. Given the teleoperated swarm (1) with the tree
communications network G(0), the following holds:

N∑
i=1

θT
i θi ≥

4λLP

r2 +Q
Vp. (11)

Proof. Define the weighted adjacency matrix A = [aij ]
associated with the tree G(0) by:

aij =

{
2P (r2+Q)

(r2−‖xij‖2+Q)2
if j ∈ Ni(0),

0 otherwise.

The corresponding weighted laplacian L = [lij ] is given by:

lij =

{
−aij if j 6= i∑
k∈Ni(0)

aik else if j = i.

Let li be the i-th row of L and x = [xT
1 · · · xT

N ]T. Then,
it follows that:∑

j∈Ni(0)

∇iψ(‖xij‖) = (li ⊗ In) x.

By the definition of θi (7), the left-hand side of (11)
becomes:
N∑
i=1

θT
i θi =

N∑
i=1

xT (li ⊗ In)
T

(li ⊗ In) x

= xT

[(
N∑
i=1

lTi li

)
⊗ In

]
x = xT

(
LTL⊗ In

)
x,

and further, by Lemma L.3 and the definition of W in [17]:
N∑
i=1

θT
i θi = xT

[
DWDTDWDT ⊗ In

]
x

=
[(

WDT ⊗ In
)
x
]T (

DTD⊗ In
) [(

WDT ⊗ In
)
x
]

=xT (Le ⊗ In) x,
(12)

where x = [xT
1 · · · xT

N−1]T = (WDT ⊗ In)x, with xk =
∇iψ(‖xij‖) for ek = (i, j), k = 1, · · · , N − 1, stacks the
weighted position mismatches between all pairs of initially
adjacent slaves (i, j) ∈ E(0) [17].

By Lemma L.1 [17], Assumption 1 implies that the un-
weighted laplacian L has positive second smallest eigenvalue
λL > 0. Because G(0) is a tree, Le is an (N − 1)× (N − 1)
matrix. By Lemma L.2 [17], its smallest eigenvalue is λL.
Hence, (12), together with (8) and (2), lower-bounds the left-
hand side of (11) by:

N∑
i=1

θT
i θi ≥ λLxTx = λL

∑
(i,j)∈E(0)

∥∥∥∇iψ(‖xij‖)
∥∥∥2

=
∑

(i,j)∈E(0)

4λLP
2(r2 +Q)2

(r2 − ‖xij‖2 +Q)
4 ‖xi − xj‖2

=
∑

(i,j)∈E(0)

4λLP (r2 +Q)2

(r2 − ‖xij‖2 +Q)
3ψ(‖xij‖) ≥

4λLP

r2 +Q
Vp,

�
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In the teleoperated robot swarm network (1), each slave i
receives information from its initial neighbours j ∈ Ni(0) at
all time if ‖xij(t)‖ < r ∀t ≥ 0. To prove that controls based
on ψ(‖xij‖) in (2) and Vp in (3) guarantee this condition and,
with it, connectivity maintenance, this paper uses induction
on time [18]: assume that all links (i, j) ∈ E(0) have been
maintained during the time interval [0, t), i.e., ‖xij(τ)‖ < r
∀τ ∈ [0, t) and ∀(i, j) ∈ E(0); then use the position xj(t)
of slave j ∈ Ni(0) in the control of slave i at time t to
prove that ‖xij(t)‖ < r ∀(i, j) ∈ E(0) by Proposition 2.
The controls proposed to render the edge set E(0) positively
invariant are:

ui = −Ki(t)si −Diẋi −Biθi, i = 1, · · · , N (13)

with Ki(t), Di and Bi are positive gains to be determined.

Remark 1. By the definition of si in (6), the control ui is:

ui = − [σKi(t) +Bi]θi − [Ki(t) +Di] ẋi,

where the first and second terms are coupling and damping
injection forces, and Ki(t) is state-dependent and thus time-
varying. Specifically, Ki(t) is updated based on the distances
‖xij‖ between slave i and its neighbours j ∈ Ni(0).

The Lyapunov candidate for connectivity preservation is:

V =
1

2

N∑
i=1

1

Bi + σDi
sTi Mi(xi)si + Vp, (14)

with Vp defined in (3). Along the transformed dynamics (9)
in closed-loop with the control (13), the derivative of V is:

V̇ =
1

2

N∑
i=1

1

Bi + σDi

[
sTi Ṁi(xi)si + 2sTi Mi(xi)ṡi

]
+

1

2

N∑
i=1

∑
j∈Ni(0)

[
ẋT
i ∇iψ(‖xij‖) + ẋT

j∇jψ(‖xij‖)
]

=

N∑
i=1

1

Bi + σDi

[
σsTi ∆i −Ki(t)s

T
i si
]

+
sT1 f

B1 + σD1

−
N∑
i=1

sTi (Diẋi +Biθi)

Bi + σDi
+

N∑
i=1

∑
j∈Ni(0)

ẋT
i ∇iψ(‖xij‖),

where Properties P.1 and P.2 of (1) and Assumption 1 have
been applied. The definition of si in (6) and the use of θi
in (7) in the control ui at time instant t, permitted by the
assumption that E(τ) = E(0) for all τ ∈ [0, t), leads to:

sTi (Diẋi +Biθi)

=Diẋ
T
i ẋi + σDiẋ

T
i θi +Biẋ

T
i θi + σBiθ

T
i θi

=Diẋ
T
i ẋi + σBiθ

T
i θi + (Bi + σDi)

∑
j∈Ni(0)

ẋT
i ∇iψ(‖xij‖),

and further to:

V̇ =

N∑
i=1

σsTi ∆i − σBiθT
i θi

Bi + σDi
+

sT1 f

B1 + σD1

−
N∑
i=1

1

Bi + σDi

[
Ki(t)s

T
i si +Diẋ

T
i ẋi
]
.

(15)

By its definition in (7), the derivative of θi is:

θ̇i =
∑

j∈Ni(0)

8P (r2 +Q)xT
ijẋijxij

(r2 − ‖xij‖2 +Q)
3

+
∑

j∈Ni(0)

2P (r2 +Q)(ẋi − ẋj)

(r2 − ‖xij‖2 +Q)
2 ,

(16)

and algebraic manipulations using Properties P.1 and P.3
of (1) imply that:

sTi Mi(xi)θ̇i ≤
∑

j∈Ni(0)

[
2 (ηi + γi)

(
ẋT
i ẋi + ẋT

j ẋj
)]

+
∑

j∈Ni(0)

[
16λ2i2P

2(r2 +Q)2‖xij‖4

ηi (r2 − ‖xij‖2 +Q)
6 sTi si

+
λ2i2P

2
(
r2 +Q

)2
γi (r2 − ‖xij‖2 +Q)

4 sTi si

] (17)

with ηi > 0 and γi > 0, and that:

sTi Ci(xi, ẋi)θi

≤
∑

j∈Ni(0)

[
c2iP

2
(
r2 +Q

)2 ‖xij‖2
2ζi (r2 − ‖xij‖2 +Q)

4 sTi si + 2ζiẋ
T
i ẋi

]
(18)

with ζi > 0. Hence, the impact of the mismatch ∆i given
in (10) can be upper-bounded by:

sTi ∆i ≤
∑

j∈Ni(0)

[
Λij(t)s

T
i si + 2(ηi + γi)ẋ

T
j ẋj

+ 2(ηi + γi + ζi)ẋ
T
i ẋi

]
,

(19)

where:

Λij(t) =
16λ2i2P

2(r2 +Q)2‖xij‖4

ηi (r2 − ‖xij‖2 +Q)
6

+
λ2i2P

2
(
r2 +Q

)2
γi (r2 − ‖xij‖2 +Q)

4 +
c2iP

2
(
r2 +Q

)2 ‖xij‖2
2ζi (r2 − ‖xij‖2 +Q)

4 .

The user-injected energy can be measured by:

sT1 f

B1 + σD1
≤ 1

4Γ
‖f‖2 +

Γ

(B1 + σD1)
2 sT1 s1, (20)

where Γ > 0. Then, after substitution from (19) and (20)
in (15), V̇ can be upper-bounded by:

V̇ ≤−
N∑
i=1

Ki(t)s
T
i si +Diẋ

T
i ẋi + σBiθ

T
i θi

Bi + σDi
+
‖f‖2

4Γ
,

(21)
where:

Ki(t) =Ki(t)− σ
∑

j∈Ni(0)

Λij(t)−
Γi

(B1 + σD1)
2

Di =Di − 2σ
∑

j∈Ni(0)

(ηi + γi + ζi + ηj + γj)
, (22)

with Γi = Γ if i = 1 and Γi = 0 otherwise.
With Lemma 1, the invariance of E(0) and, with it, con-

nectivity maintenance for the teleoperated swarm (1) under
the controls (13) is guaranteed by the following theorem:
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Theorem 1. The controls (13) maintain the connectivity of
the teleoperated swarm (1) with Assumptions 1 and 2 by
rendering the edge set E(0) invariant if their parameters are
selected as follows for all slaves i = 1, · · · , N :
1. choose ρ, σ, ηi, γi, ζi, Γ and Bi heuristically;
2. set Di to make Di ≥ 0 in (22);
3. select Q by condition (4);
4. set P sufficiently large to guarantee both Equation (23):

P ≥ ρ(r2 +Q)

4λL
max

i=1,··· ,N

(
Bi + σDi

σBi

)
, (23)

and Equation (4) with:

∆ =
1

2

N∑
i=1

λi2
Bi + σDi

‖si(0)‖2 +
f
2

4ρΓ
;

5. update Ki(t) according to (22) to ensure that:

Ki(t) ≥
1

2
ρλi2. (24)

Proof. After substitution from (11), (21) leads to:

V̇ ≤−
N∑
i=1

Ki(t)

Bi + σDi
sTi si −

N∑
i=1

Di

Bi + σDi
ẋT
i ẋi

− min
i=1,··· ,N

(
σBi

Bi + σDi

)
4λLP

r2 +Q
Vp +

‖f‖2

4Γ

≤− 1

2

N∑
i=1

ρλi2
Bi + σDi

sTi si − ρVp +
‖f‖2

4Γ

≤− ρV + ρχ (‖f‖) ,

(25)

where Di ≥ 0, (23)-(24) have been applied, and:

χ(‖f‖) =
‖f‖2

4ρΓ
.

Time integration of V̇ from 0 to t ≥ 0 gives:

V (t) ≤e−ρtV (0) + ρ

∫ t

0

e−ρ(t−τ)χ(‖f(τ)‖)dτ

≤e−ρtV (0) + ρ sup
0≤τ≤t

χ(‖f(τ)‖)
∫ t

0

e−ρ(t−τ)dτ

≤e−ρtV (0) + sup
0≤τ≤t

χ(‖f(τ)‖).

(26)
Then, Assumption 2 and (26) imply that:

Vp(t) ≤ V (t) ≤ e−ρt · Vp(0) + ∆ ∀t ≥ 0,

and, with Proposition 2 and Q and P selected by (4), further
imply that ‖xij(t)‖ < r ∀(i, j) ∈ E(0), i.e., the connectivity
of the teleoperated slave swarm is preserved. �

The proof of objectives 1 and 2 of Problem 1, omitted due
to page limit, shows input-to-state stable swarm [20].

Lemma 1 and Theorem 1 are the key contributions of this
paper. The inequality (11), which holds for the tree network
G(0), helps bound V̇ in (21) and (25). Then, the time integra-
tion (26) and Proposition 2 imply that the distance between
any slave pair (i, j) ∈ E(0) can be maintained strictly smaller

than the communication radius r. Compared to autonomous
MRS-s and leader-follower systems, the connectivity of a
teleoperated swarm can be endangered by the unpredictable
perturbation f sent from the master. Unlike external distur-
bances, e.g. wind forces, f conveys the operator command to
the slave swarm and should be accepted unless it threatens
swarm connectivity by moving the informed slave such that
other slaves cannot keep up with it. The analysis in this
section proves that the distributed controls (13) eliminate
the threat posed by the operator command to connectivity
if properly designed. Condition (24) on Ki(t) exposes the
uniqueness of the proposed design, especially in the P+d
control form in Remark 1: it stiffens the inter-slave couplings
and simultaneously increases their local damping injections
on their relative distances. To the authors’ best knowledge,
the control (13) is among first to maintain the connectivity
of a teleoperated swarm via a state-dependent updating law
of the coupling and damping gains.

IV. EXPERIMENT RESULTS

Figure 2 depicts the swarm teleoperation testbed used to
validate the dynamic strategy (13). In it, a Novint Falcon
device is the master and three Geomatic Touch robots are
the slave swarm. All robots are connected to local com-
puters that run the Robot Operating System (ROS) and
MATLAB/Simulink. The positions of all slave end-effectors
are controlled locally and, together with the inter-slave
connections, are displayed on the master side in real-time
for visual feedback to the operator.

Fig. 2. The swarm teleoperation testbed used in the experimental validation.

Whereas the master-slave 1 connection is permanent,
slave 1 exchanges positions with slaves 2 and 3 only
when they are strictly closer than r = 0.1 m from each
other. Hence, the initial tree network of the slave swarm
is G(0) = {V, E(0)} with V = {1, 2, 3} and E(0) =
{(1, 2), (1, 3)}. The operator commands the motion of the
slave swarm through saturated Proportional master-slave 1
control: f = Sat (K · (x0 − x1)), where Sat(·) is the stan-
dard saturation and x0 is the position of the master end-
effector. To avoid destabilizing the experiment, slave 1 is
compliantly connected to the master robot with K = 10.
The controls (13) aim to synchronize the slave swarm with
the master while preserving interconnection links (1, 2) and
(1, 3) under perturbation f .

Figure 3 plots the task-space paths of all robot end-
effectors. The operator first moves the master from A to B
and to C slowly, and all slaves are synchronized tightly and
follow the master. Then, the user moves the master from C to
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D fast, increasing the perturbation f to the slave swarm. The
paths of all slaves overshoot, but the slave swarm approaches
the master. Because of gravity compensation errors of the
swarm and compliant master-slave 1 connection f , the slave
swarm cannot track the master closely in the experiment.
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Fig. 3. Experimental task-space paths of all robot end-effectors.

Figure 4 plots the experimental inter-slave distances: 1-2
- the red line; 1-3 - the blue line. For small operator pertur-
bation f (from A to C in Figure 3), the inter-slave position
errors are smaller than 0.01 m. For increased perturbation f
to the slave swarm(from C to D in Figure 3), those errors
quickly grow to 0.03 m, at about the 27-th second. Yet, the
controls (13) keep them strictly smaller than r = 0.1 m and
preserve links (1, 2) and (1, 3) in the swarm tree network.
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Fig. 4. Inter-slave distances: 1-2 - the red line; 1-3 - the blue line.

On the contrary, the experiment at https://youtu.
be/UDAJAbRszS0 shows that increased user perturbation
f breaks the inter-slave links and thwarts swarm synchro-
nization in the absence of the proposed algorithm.

V. CONCLUSIONS

The dynamic coupling and damping injection law in this
paper preserves the tree network connectivity of a teleoper-
ated swarm. After sliding surfaces reduce the order of the
swarm dynamics, a customized potential function provides
the dynamic couplings that, in combination with dynamic
local dampings, prevent the dynamic mismatches induced
by the sliding surfaces from changing the connectivity of the
slave swarm. Rigorous energy analysis proves that all links
of the tree network are preserved by the proposed dynamic
regulation of the inter-slave couplings and of the local
damping injections. Future work will consider connectivity-
preserving swarm teleoperation with limited actuation and
heterogeneous communication radius.
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